
%) l13EEYRANSA17HONSON MKXOW’A%’l? THRORY AND TECHNIQUES, VOL. MTr-28, NO. 2, FBRRUMY 1980

Microstrip Transmission Line with
Finite-Width Dielectric

CHARLES E. SMITH, MEMBER, IEEE, ND WY-SUN ~HANG, MEMBER, IEEE

Absrmct-The results of a nmoerkaf sohdion for open rrsicmdrip

@wtiIon fine with fiite-wisfth dielectric are presented for a qsmsi-
TEM computatioti model, The related solution is kwed 0ss moment
methods using qdwfent source models for the free and bound chargea

efitig on boundary surfaces. Clmmcteristfc impedance and velocity of
~mp~ation we pswessted in graphical form for estimating the effects of
dielectric truncation ors microstrip circuits and for related circuft design.

INTRODUCTION

s

1~~~ THE 13ARLY FH?TIES, rnicmstrip transmis-

sion lines have received a great deal of attention from

the electrical engineering community [1], [2]. The work in

these areas has focused on the numerical solution of the

infinite-width microstrip [3]–[5], rectangular sections of

microstrip [6], [7], and the finite-width microstrip in a

shielded box [8].1 However, the characteristics of the prac-

tical case of the finite-width open microstrip transmission

line, as shown in Fig. 1, have not been investigated and

reported.

Tbe purpose of this paper is to investigate the effects of

truncation on open microstrip line with finite-width di-

electrics. The results of this study are presented in the

form of design diagrams. The case of truncated dielectric

with infinite ground plane is considered because it ap-

proximates the practical case better than the idealized

infinite-width model.

Numwcm sOLUTION

The microstrip problem of Fig. 1 has been solved using

a free-space Green’s function formulation in terms of

equivalent charge sources coupled with a moment method

solution [9]. This approach to electrostatic problems has

been described by Barrington and Pontoppidan [10], by

Adams and lvlautz [8], [11], and, in a slightly different

form, by Smith [12]. In this formulation, a set of coupled

integral equations in terms of equivalent charges and a

free-space Green’s function are obtained by enforcing

proper boundary conditions.
The quasi-static problem related to this analysis can be

represented as two regions separated by a boundary C

corresponding to the air-dielectric interface of the micro-
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Fig. 1. Finite-width microstrip line with truncated dielectric substrate

and iufinite ground plane.

strip and its image [12]. The configuration reduces to a

two-dimensional analysis of the microstrip cross section as

shown in Fig. 1 or in the inserts of the other figures. In

this case, the scalar (or Laplacian) potential for the ex-

terior (Region 2) and interior (Region 1) areas can be

represented in terms of sources on the boundary using the

equivalence theorem [13]. The “equivalent” problem

which consists of surface-type charge densities may be

derived from Green’s theorem applied to each region [10],

[12]. Based on this approach, the scalar potential in either

region can be expressed in terms of the equivalent sources

as

(1)

where o(~) is the sum of the equivalent free and bound

charge source densities on the interface, C is the interface

contour boundary, ~ and ~ are vector quantities repre-

senting the general source and field points, respectively,

and the Green’s function is

Under the assumption of a quasi=.TEM model

inhomogeneous structure, boundary conditions

(2)

for this

require
continuity of the normal component of electric flux den-

sity, i.e., ClE~l = t2En2, on the dielectric interface. Since

~= – V@, it can be shown from (1) and this boundary

condition, as applied in both regions, that

where c,== C2/el, c1= ~0 (free-space permitivity), and the

partial derivative is in respect to the outward normal to

the interior region.

Equations (1) and (3) form a set of coupled integral

equations in terms of the unknown charge density if the

following boundary conditions for voltage V are enforced:

o(p) = V on the strip
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and TABLE I

+(P) = – V on the strip image portions of the boundary COMPARISON OF CEXARACIMUSTXClMFEDANCE OF FINITE-WJDTH AND
lNFINITS-WIDTH MICROSTRIP TRANSMISSION LrNS ( W/H= 2.0, 2’/ W* 15.0,

(4) RELATIVEDIELECTRIC CONST~ c, ~ 16) ‘

where continuity of electric flux density on the dielectric Method Z.

interface has been insured by (3). - Bryant and Weiss[3] 26.644St

The solution of the related coupled integral equations
Farrar and Adams [4] 26.756SI

((1) and (3)) has been obtained with matrix or moment
smith [12] 26,879Q
Finite-width solution 26,7830

methods using pulse function expansion of the unknown

equivalent sources and a “point-matching” or collocation

technique [ 14].2 Once the approximate solution for the

total equivalent charge density is known from the moment
method analysis, the free charge density pC can be com-

puted from the discontinuous nature of the electric flux

density on a strip boundary where free charge exists. Thus

it can be determined in a manner similar to that used for

(3) that

P.(F) = ~nl – Dn2

=(,r+l)q +(6, -l)@-’) ~G”:~) d.’. (5)
c

Equation (5) can easily be expressed in terms of the

known matrix coefficients and u@) for subsequent analy-

sis [10], [11]. Note that the approach is not limited to

specific geometries, and arbitrary shaped inhomogeneous

TEM transmission lines can be analyzed with this

bounda~-value problem approach[11]-[12],

RESULTS

A computer program based on this formulation has

been developed to calculate a solution to this boundary-

value problem. An attempt to validate this computer code

has been made by computing the limiting case as the

truncation width T approaches infinity with W/H= 2.0

for the line of Fig. 1. A comparison of this computed data

with previously reported results for the infinite-width mi-

crostrip is presented in Table I which indicates very good

agreement between the different computations.
In addition, experimental measurements have been

made on actual models of the finite-width microstrip for

large ground plane widths WP. In these experiments, the

characteristic impedance was determined from time-

domain reflectomet~ (TDR) measurements, Results are

presented in Fig. 2 along with the computed data for

specified finite-width lines. As can be seen, these TDR

measurements do tend to indicate that the truncation of

the dielectric does not influence the characteristic imped-

ance for T/W ratios greater than one (for e,= 4.7). The

small errors in these measurements can, for the most uart,

be attributed to inaccuracies in measurement of the ;ela~

tive dielectric constant of the microstrip board.

It might be expected that the characteristic impedance

would not be highly dependent on dielectric width in this

case because the fields are concentrated under the strip

for these larger values of W/H and ~,. The influence of

the truncation is even more evident in the plot of the line

charge density per unit width of Fig. 3. For a related
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Fig. 2, Characteristic impedance for rnicrostrip fine (W/H= 2,47, q w
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infinite-width line, the equivalent line charge density on

the dielectric interface decreases monotonically as a func-

tion of cross sectional length along the dielectric interface.

In the truncated case of Fig. 3 (T/ W’= 2.0), the equiv-

alent charge has a discontinuity in slope at the edge of the

dielectric. At this point, the charge density does indeed

exhibit singular behavior as would be expected at an edge;

but, this singular nature is not prominently evidenced in

Zme pficipal v~ueof the integral of (3) was represented as a pulse this plot because the magnitude of charge ‘density is very

expansion term of appropriate magnitude for moment method analysis, small relative to that of the charge densities on, under,
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Fig. 4. (a) Characteristic impedance of rnicrostrip for T/W= 2.0. (b)
Velocity of propagation on microstnp for T/ W= 2.0.

and near the strip. It is a direct result of this small

magnitude in conjunction with distance between regions

that the truncation does not greatly influence the propaga-

tion characteristics.

Computations reveal that as T is increased to large

values for a fixed W/H ratio, the magnitude of charge

density in the truncation region decreases, thereby reduc-
ing its contribution to (and effect on) the fields near the

source strips; however, for small T/W ratios this region

does contribute significantly to the fields structure which

results in changes in the propagation characteristics of the

microstrip transmission line. The actual effect of symmet-

rical truncation of microstrip transmission lines is shown

in Figs. 4–7 where computed values of characteristic

impedance and velocity of propagation are plotted for

several truncation width ratios T/W and relative dielec-

tric constants as a function of W/H. A comparison of the

data of Figs. 4–7 and the infinite-width data3 of Bryant

3For exuple, see dotted limes in Fig. 44
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Fig. 5. (a) Characteristic impedance of rnicrostrip for T/W= 1.0. (b)
Velocity of propagation on rnicrostrip for T/ W= 1.0.

and Weiss [3] indicates that microstrip transmission line

can be truncated at T/W= 1 in most cases without signif-

icantly affecting either the characteristic impedance or the

velocity of propagation. This property is not entirely un-

expected; however, after the numerical results were ob-

tained, it was surprising to find how close the truncation

could be made without changing the line characteristics.

Another problem of the same class is nonsymetrical

truncation of the dielectric structure as it is related to the

question, “How close to the edge of dielectric can a strip

be placed without altering the propagation characteristics

from that of the infinite-width model?” A similar numeri-

cal procedure has been developed and prograrnsned to

compute the characteristic impedance for this nonsym-

metrical electrostatic problem, and results of this com-

putation are presented in Fig. 8 for one case along with

data for the corresponding symmetrical truncation. From

a practical point of view, it would be expected that propa-

gation would not be influenced as much by symmetrical
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(a) Characteristic impedance of microstrip for T/ W=O.5. (b)
Velocity of propagation on microstrip for T/ W= 0.5.

truncation since less dielectric is removed. This is indeed

the case as can be seen from a comparison of the solid

and dotted lines in Fig. 8.

CONCLUSIONS

It has been shown that the propagation characteristics

of symmetrical and nonsymmetrical truncated microstrip

transmission lines4 remain essentially unchanged from

those of the infinite-width line for T/W> 1. although an

appreciable variation occurs for T/W <0.5. The detailed

dependence of truncation on the choice of dielectric

material and the choice of W/H ratios may be obtained

from Figs. 4–7. In addition, the parameter study of the

propagation characteristics of Figs. 4–7 provides inforrna-

Fig. 7.
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tion for the design of impedance transformers using

tapered-dielectric transmission lines with fixed W/H

ratios.

‘%ese models represent practical cases of microstnp line with finite-
width dielectric and metal clad mounted on a metaf support block. TDR
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Coupled Microstrip Disk Resonators
NIKOLAOS K. uZI-JNOGLU and P. KATECHI

Abstruet-Tbe coupfing between microstrip disk resonators is inveati-

gaterf analytically and experimentally. The interaction between the printed
dfsks fs modeled by a gap capacitmrq which is computed by SQlving the
eorrespondfrrg ektrostatic problem. An integraf equation is nsed to de-

terndnc the nonsymmetrfc charge distribution on the disk resonators.
Nmnerieaf reaolta are presented for severaf cases. For a specific case the

prediction of the theory is compared with the experiment.

I. INTRODUCTION

T HE GAP CAPACITANCE for microstrip printed

circuits [1], [2] is investigated by several authors,

where mostly linear edge shapes are treated. In this article

the coupling between printed disk resonators is consid-

ered.

The geometry of the problem is defined in Fig. 1. The

coupled disk resonators are printed on a grounded dielec-

tric substrate. The substrate thickness is H with a relative

dielectric constant c,. Also a second perfect conductor-

ground plane is assumed at z = B. The coupling between

the two resonators is assumed to be mainly due to the

fringing effects of the electric fields; and, as a result, the

coupling between the two disks can be modeled by a gap

capacitance Cg. In Section II a method for computing Cg

is developed. The method is based on using the cylindrical

coordinates in conjunction with Galerkin technique. The
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B

Fig. 1. Coupled resonator geometry.

resonance frequencies for disk resonators can be com-

puted by assuming infinite magnetic conductivity resona-

tors walls [3]. The behavior of coupled resonators can be

predicted by considering an equivalent circuit around

each resonance frequency.

Assuming the disks to be raised at ~1 = 1/2 and V2 =

– 1/2 V the total charge on each disk will be

Q(D)= C,(D) +(l/2)C (1)

where C is the self capacitance of each disk. For very

large D values

lim Q(D)= (l/2)C
D++co

so the gap capacitance will be

Cg(D)= Q(D)– J& Q(D). (2)
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